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SUMMARY OF RESEARCH RESULTS

The following report tiffed "Computation of Optimal Low- and Medium- Thrust

Orbit Transfers" gives the detail of the research results. We summary these

results and future research plan here.

The first-order necessary conditions fo,r..ageneral final mass maximization

problem has been set up. In the problem formulation we include second-

harmonic oblateness, atmospheric drag, and allow three-dimensional, non-

coplanar, non-aligned elliptic orbits. In order to ease the numerical calculation

we transform the original free final-time problem to a fixed final-time problem,
and non-dimensionalize the state variables.

Although we can use the constant angular momentum equation, the

conservative energy equation, and the orbit equation to specify the boundary

conditions for the terminal orbit, we notice that this set of boundary conditions

does not uniquely determine an orbit. This is due to the fact that for a given

point in space we can have two different velocity vectors (difference in direction

only) and yet have the same angular momentum and energy. Proper boundary

conditions should be three eccentricity vector equations plus three angular

momentum vector equations. Since both eccentricity and angular momentum

equations specify the same orbit plane, one of these equations is redundant. That

is for a three dimensional problem we only need five equations out of both sets

of equations. For two dimensional problem we need two eccentric/ty equations

and one angular momentum equation.

4. We have applied two indirect optimization methods: BOUNDSCO and MBCM

(minimizing-boundary-condition method) successfully to several simplified

examples. The examples are two dimensional with oblateness effect and

atmospheric drag force. Both methods converge to the solutions with about the

same sensitivity in the initial guess. Although we have more freedom in

selecting the initial guess at every node points, BOUNDSCO does not adjust the

number of switching points and the switching pattern during the iteration. On

the other hand, MBCM implements the switching function into the integrator

and adjust the switching points and the switching pattern automatically during
the iteration.

5. Our current plan is to combine advantageous features of BOUNDSCO and MBCM

into a new algorithm. The new algorithm will use the idea of the multiple-point

shooting method to spre_id the unknowns among the node points, and between

two node points applies the minimizing-boundary-condition method.

. There is still a question about the local optimum or global optimum for free final

time problem. We have some difficulty in converging the transversality

condition for the free final time case. In Edelbaum's paper, he shows that _hree

impulses control is usually minimum. However, such claim for low and

ii



medium thrust has not been shown anywhere. Our current hypothesis suggests
that the global minimum solution will be at infinite final time and local
minimum solutions exist for finite final time. We expect to answer this

question by obtaining all the local minimum solutions (if they exist) and

compare their cost functions along the final time axis.

°°°
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Computation of Optimal Low- and Medium-
Thrust Orbit Transfers

ABSTRACT

This report presents the formulation of the optimal low- and medium-

thrust orbit transfer control problem and methods for numerical solution of

the problem. The problem formulation is for final mass maximization and

allows for second-harmonic oblateness, atmospheric drag, and three-

dimensional, non-coplanar, non-aligned elliptic terminal orbits. We setup

some examples to demonstrate the ability of two indirect methods to solve

the resulting TPBVPs.

The methods demonstrated are the multiple-point shooting method as

formulated in H. J. Oberle's subroutine BOUNDSCO, and the minimizing

boundary-condition method (MBCM). We find that although both methods

can converge solutions, there are trade-offs to using either method.

BOUNDSCO has very poor convergence for guesses that do no exhibit the

correct switching structure. MBCM, however, converges for a wider range of

guesses. However, BOUNDSCO's multi-point structure allows more freedom

in guesses by increasing the node points as opposed to only guessing the

initial state in MBCM. Finally, we note an additional drawback for

BOUNDSCO: the routine does not supply information to the users routines

for switching function polarity but only the location of a preset number of

switching points.

I. INTRODUCTION

The ability to perform any given orbit transfer with a minimum use of

fuel is obviously desirable. Useful solutions to this problem will account for
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at least some approximation to real-life. Therefore, a formulation that

includes second-harmonic oblateness and atmospheric drag will be useful.

This report follows such a derivation all the way through to the

establishment of a two-point boundary-value problem for optimal low- and

medium- thrust orbit transfer. The core co'st function is defined simply as the

final mass of the spacecraft plus fuel, setting the tone for the maximization

problem. The differential constraint is thoroughly defined in terms of the

oblateness model and an assumed atmosphere model.

The thrust (control) appears linear in the differential constraint. This

results in bang-bang control or singular-arc solutions for the final mass

maximization problem. Although bang-bang control is assumed here the

possibility of having a singular arc has not been ruled out for a general case.

In order to ensure the singular arc solution does not occur, we check the

derivative of the switching function at each switching point. However, when

our programs reach a non-optimal solution high frequency chattering

solutions do occur occasionally. This could indicate that singular-arc

solutions are possible for some modification of system parameters and

models.

The final mass maximization problem should be a free final time

optimal control problem. For impulsive thrust, the Hohmann transfer gives

minimum fuel but maximum transfer time. Although the three-impulse

Hohmann transfer performs better than a two-impulse Hohmann transfer,

Edelbaum 1 shows that the number of impulses may be finite for a global

minimum, for low- and medium-thrust orbit transfer the same conclusion

has not be shown anywhere. One hypothesis is that the global minimum will

be at infinite final time and local mini'mum solutions exist for finite final

time. In other words, this assumes for a given number of switching points

(must be at least two) there is a local minimum with finite final time. We do

have difficulties in converging the transversality condition corresponding to

optimal final time.

We present solutions to three specific optimization problems. These

solutions represent the ability of _he two TPBVP solvers. The methods
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considered are (1) BOUNDSCO, a multi-point shooting algorithm devised by

H. J. Oberle and (2) the minimizing boundary-condition method (MBCM), a

modification to the shooting method devised by the authors of ref(9).

Both methods converge solutions for about equal sensitivity in initial

guesses. In order to achieve the same acdiracy along the path, BOUNDSCO

needs to converge the boundary conditions at every node point to the same

accuracy as the integration routine, the number of switching points and the

switching pattern need to be assumed and stay unchanged when BOUNDSCO

is used. On the other hand, MBCM does not constrain the number of

switching points and MBCM updates the switching pattern along the

integrated path.

11. THE PROBLEM

The problem discussed herein is the following: maximize the final

mass of a thrusting spacecraft for a given orbital transfer. The craft can be

considered as under the influence of some planet's gravitational field and

atmospheric drag. The thrust of the spacecraft is limited between zero and

some Tmax. The transfer will be defined by the terminal orbits. Solutions are

sought for both fixed and free final time problems and both the case of fixed

and free terminal points.

II. 1. The Cost Functional

The core cost functional must be defined. We shall define the cost as

J = m(tO (1)

where m(tf) represents the mass of the spacecraft plus its fuel at the end of the

orbital transfer. We shall use the methods of optimal control to maximize

the cost functional, thereby maximizing the final mass and solving the

problem.
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1I. 2. Differential constraint: System Dynamics

4

We represent the spacecraft by a point mass and assume it to be a

thrusting craft acted upon the by the aerodynamic drag and oblate-body

gravity forces of a central body. We also represent the central body, or planet,

as a point mass positioned at its own Center of gravity. We restrict the

problem to crafts of mass much smaller than that of the central body,

allowing us to fix the planet in inertial space. We shall describe this inertial

space with a rectangular Cartesian inertial reference frame. All motion

within this frame of reference agreeing with the above assumptions must

satisfy the well-known Newton's equation:

= d (m v-') (2)
dt

where m is the spacecraft mass and _ is its velocity with respect to the

reference frame.

In this case, gravity, drag, and thrust make up the total force acting on

the craft. The thrust on the craft is composed of two separated thrusts, the

pressure thrust and the thrust created by the expulsion of mass. That is,

(3)

where v-_ is the expulsive velocity of mass. Therefore,

and

Fw_ thrust = Fpressure thrust + l_e
(4)

-- - (5)Ill V ---- Fthrust - Fdrag - rarity

We write the total thrust, herein referred to as just thrust, as some

. time-varying magnitude, T, independent of a time-varying direction, _:
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F_thrust = T _ (6)

Note that _ is expressed as a unit vector. For a three dimensional thrust

vector the control requires three components. For two dimensional problems

only two independent control components are required.

The mass will decrease according to

tia = - __T__ (7)
go Isp

We assume that the atmosphere surrounding the central body can be

described by an exponential model of the standard atmosphere 2. The

following equation 3 describes such a drag force:

Fdrag=½Poe'l_("r°)SCD[_2_ = lpoe-B(r-r°)SCD[_
(8)

where 13 and ro are constants from the atmosphere model describing air

density variation in the prescribed altitude region, Po is the atmosphere

density for the altitude ro, S is the wetted area of the craft, CD is the craft's drag

coefficient, and _ is craft's current velocity with respect to the inertial

reference frame. We are assuming that no matter the orientation of the craft

the product of SCD remains the same and that the craft always remains in a

region where the chosen exponential atmosphere model is valid.

Within the confines of this study, the only other influence on the craft

is gravitational potential energy. The gravitational potential energy to the

second harmonic is4:

U= m]_ .!_ j R2 m I_
r 3 _ ( 1 - 3 cos20 ) (9)

Where R is the equatorial radius of the central body, 0 is the latitude angle of

the curre,_,: position from the equator, and r is the distance from the central
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body's center of gravity to the current position of the craft with respect to the

inertial reference frame, H is the gravitational constant for the central body, m

is the mass of spacecraft, and J is a constant describing the mass distribution of

the planet. There are additional mass distribution terms but we shall truncate

the series here.
t=

We now assume that (1) the central body is fixed at the center of the

reference frame and (2) that the plane of the central body's equator is aligned

with the x-y plane. The assumption (1) means that the position, velocity, and

acceleration of the craft are now measured with respect to the central body.

The assumption (2) means that we may describe r with Cartesian coordinates

by

r =_/x 2 + y2 + z 2 (10)

and we may describe 0 with Cartesian coordinates by

Z = r cOS 0
(11)

We may now write the gravitation potential as

m_t
U _ --

r

(12)

The force experienced by moving in a potential field

Performing this operation on the gravitational potential yields

• Fgravity ---- (__)T

(13)

and
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--= x + JR 2 x(1-5(_) 2)
/gx

(14)

_U m _t R2 m _t

c3y = -'_--'Y + J --FY(I" 5(z)2)

(15)

(3z= -_z + JR2 z(3- 5{rZ)2)
(16)

All of the dynamics combines to form the following equations of motion

m_/ = Te_ - ---ff-mBx-jR2mllx(1-is 5(Zr) 2) -21_ e'"e'_*'SCDv:_ (17a)

my = Te, ----ff-y - JR 2 y(1- 5(r_)_) - poel_e_*}SCDv_ '

m_. = T_-mBz- jR2mBz(3 - 5(r_ _) -2ZPoe'ae_*)SCDv_

(17t})

(17c)

which can be written in vector-matrix form as

_T_ . _; . jR 2
-m r' 0 _-5 0

o o

-lP*e'ae"o}SCDv; (18)
2m

To conform to convention we make the change from J to J2 as described in

ref(4):
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r --Tc -
Ill

Ol - 5

O0

_- . lP___e-DC,-,o> S CD v r
2m

(19)

This can also be rewritten as a first-order system:

(20a)

003

S CD v _ (20b)

IF[. THE FIRST-ORDER NECESSARY CONDITIONS

All problems herein perform a maximization of the final mass. Now,

in order to write the adjoined cost functional we need to know what is

included in the state, in the control, and what the constraints on these are.

First, however, we note that the problems herein are also free-final-

time problems• The three differential equations above are written with

respect to the independent variable t (time). For ease in numerical methods,

we want to transfer the problem from free- to fixed- final time. This means

that we must define a new independent variable x (non-dimensional time) to

be used in the place of t (dimensional time). This allows tf to become a state

variable. We make the following scaling:

t = tf'¢ . (21)

Therefore, to translate this to a fixed-time problem, tfmust multiply the

derivatives of the states. The dot above a variable now means a derivative

with respect to x.

We know what to include in the state, _(x):
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(22)

We also know that our state is confined by the system dynamics so that

"-4'

x(_) = tt

Z,.;.__. .j_ o 1 o -
r_ 003 2m

___T__
go I,p

0

(23)

for all time z e [0,1]. This is the differential constraint of the control problem.

The thrust magnitude has both an upper and a lower bound. The

upper bound we shall call Tmax, the lower bound is obviously zero. We,

therefore, also have an inequality constraint that must be satisfied for all time

_ [0,1]:

(T - Tmax)T < 0 (24)

and Eqn (25) can be rewritten as an equality constraint

(T - Tmax)T + a 2 0 (25)

where o_ is a slack variable, free to change with time. Finally, we need to

specify the terminal orbits. We will do so by writing a vector equation

_g(_'(0),_'(1)) = 0 (26)
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that is only satisfied when our initial and final states both lie on their

respective orbits.

10

Now we know enough to write the adjoined cost functional for this

problem:

J = m(1) + v_T_(O),:(1)) +
' #-'v_. -. o_2]} dxIx + -Tmax)T + (27)

where m(1) is the final mass and V_(0),_(1)) -- 0 represents the boundary

conditions.

The X shown in the cost functional is the costate vector, also called the

Lagrange multipliers. This vector will be of the same dimensions as the state.

For simplification's sake, we will segment this vector as follows:

[-T 7_.(t) = _ (t) kv (t) km (t) ktf (28)

.=¢#

Also, in Eqn (27), v is the Lagrange multiplier corresponding to the boundary

conditions V. _ is a constant in time.

111.1. The Hamiltonian

With the pertinent dynamics defined, we are now able to write the

Hamiltonian for the system. We take the Hamiltonian from the cost

functional as

H(-_(t),_(t))= k [f(-_(t),_(t))]+ I.I[(T - Tmax)T + oc2] (29)

A major simplification can be made now. Notice that, excluding the

constraint on the thrust, the Hamilton/an is linear with respect to the control

T (but we shall see it is not linear with respect to _ ):
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H(_(t),_(t)) = m_ _ _- _--T-- + ...
goIsp (3O)

11

This, in conjunction with the structure of the thrust constraint, means

that we may assume that this is a 'bang-bang' control problem. Enough is

known about this type of problem so that we may do the following:

(1) Define a new Hamiltonian that differs from the original only in the

omission of the thrust constraint.

"_r.4. .--t. "1

H('_(t),_(t)) = _, [f(_(t),u(t))] (31)

(2) Establish what will be called the switching function. In general, the

switching function is defined by the partial derivative of the Hamiltonian

with respect to the control by which it is linear. For this problem, This is

8H
done by evaluating _-_-:

---T

c)H = HT_)W e
8T m Isp go (32)

This, Eqn (32), is the switching function.

(3) Evaluate a restricted case of the well-known Euler-Lagrange

equations. Most of these determine the costate dynamics and we shall see

these in section III.2, however, the last one determines part of the control for

the problem. This equation is

8H
_=0

(33)

---o

Evaluating (33), it appears that H is linear with respect to e. However, we

must remember- that e represents only the direction of the thrust. If we
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exchange e for some angle O and define this angle as between e and Xv we

may write

I L

H-  cos0 ....

(34)

(35)

Evaluating H0 we find that

__ T _sine
_ m (36)

12

and this equals zero only when the vectors are parallel. There are only two

choices for e: in the direction of Xv or in the exact opposite direction. Since we

are maximizing the final vehicle mass, we need to have Hee negative (one of

the sufficient conditions for the second variation). This is only satisfied with

e in the direction of K, or

e = _.v

(37)

We must obey this for all time z _ [0,1].

Lawden's primer vector 5.

This result is consistent with that of

(4) Perform bang-bang control with T. This means that T is always on-

boundary, i.e. T=0 or T=Tmax at any z _ [0,1]. We know which value to use

for T by evaluating the switching function, which we can now write as

m Isp go

The bang-bang control law is

(38)
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HT > 0 T = Tmlx

HT<0 T=0

(39)

This switching structure satisfies the Pontryagin maximum principle by

maximizing the Hamiltonian using T. ,.

III.2. The Costates

The costate dynamics can be found from the following Euler-Lagrange

equations, relating them to the Hamiltonian:

-_ aH T (40)

-_ OH T (41)

a;

--;L = aH (42)
"'qli am

To evaluate these, we must first substitute the equations of motion into the

Hamiltonian

H = tf{_ v + ;£v [ e- + J2 R 2N-
r3

_ 15j21 "tR2(z2)]_ _ 1 P°e-13(,._)SCDv_] (43)

T }
go Isp



When evaluated, these become the following vector and scalar differential

equations:

14

lp_o__o-,,..,scov(_
2mr ,,..

_[o]where k = 0

1

[ 1--T 1 po e.i}(r.ro)SCo v +;Lv = tf - _-r + --_
2 m v

(45)

__=_[-_7_
m 2

+ _ P° e-,.-,o_SCo v x-_Vt l
2 m 2 J

(46)

IV. SOLVED PROBLEMS

W.1. Simplifications

We have made a few simplifications that ease the formulation of the

numerical problem and its solution. The'first of these is the reduction from a

three-dimensional problem to a two-dimensional problem. To remove this

dimension, we simply remove the z-component to all equations. Because of

the chosen coordinate system, this also means that all orbit transfers

considered are equatorial. Unfortunately, the effect of oblateness is

substantially decreased for this case. The other simplification is the restriction
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of problems to fixed-initial points. This also greatly eases the problem

formulation. The third and final simplification is the fixing of the final time.

W.2. The Two-Point Boundary Value Problem

15

As a result of the simplifications, the boundary conditions have been

stated in two dimensions. The starting orbit determines the initial conditions

on position and velocity. The final conditions, however, require a more

abstract specification as we do not know exactly at what point the craft will

enter this orbit. The following relations specify the final orbit: (All of the

following conditions is to be evaluated at the final time, tf, or z=l.)

(Angular Momentum) _1/1: <x,y> x <u,v> = xv - yu = h

xv - yu - h = 0

(47a)

(eccentricity vector (x)) _2: t ex = _I(V2-r_)X - (r_)u] (47b)

(eccentricity vector (y)) _r3: (47c)

Note that the orbit equation for x-axis aligned orbits and the energy

equation can replace (47b) and (47c). However, the combined constraints of

angulai', momentum, orbit, and energy equations do not uniquely specify an
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x-axis aligned final orbit. There are two possible velocity vectors at one point

with the same angular momentum and energy.

These conditions completely determine the final orbit. However, these

conditions do not complete the two-point boundary-value problem. To

complete the TPBVP, the methods of optimal control supply use with a set of

natural boundary conditions found by evaluating

16

_(1) = [ 0G IT (48)
_b x(1)/

where G is the constructed from the function portion of the cost functional,

e.g. for the cost functional

J= re(l)+ v-"r_(x'(O),_(1))+ {_ [f(x(t),u(t))- _] + {.t[(T-Tmax)T + _2] }d'l: (49)

G is

G = m(1) + V-*T_(O),_(1))
(50)

Constructing G with the above conditions on the states, we can find

conditions on the costates at x=l:

G=m+vl(xv- yu- h) +[ v2 v3

evaluating Eqn(49) gives

(51)

= bx = v, v2 v2-Ft+ x2-r r3

_.y bG x y _by = v1(-u) + v2 - + v3 V 2 _t +y2=-- "T r3

(52b)



f

17

=_=v1(-y)+ v2 +v3 2yu-xv)
(52c)

= "_" = Vl(X) + V2 2xv -uy) + v3
(52d)

(52e)

note that the constant Lagrange multipliers vi are additional unknown's.

The last condition deals with the final time. If the final time were free

we would use the transversality condition

H_(1),_(1),X(1)) = - O--G-G
Otf

(52-0

or, for this problem

H_(1),_(1),X(1)) = 0
(52g)

However, all the solutions presented in this report are fixed-final time. Note,

however, that the same algorithm can be used for both types of problems, all

that is required is that equation (53g) be replaced by the specification of tf.

W.3. Non-Dimensionalization -

To improve accuracy, we have non-dimensionalized the problem.

This aids in a few ways. First, the integration of the state is more accurate

because all variations are on the same order. Second, convergence is

improved because all the boundary conditions are immediately placed at or

near the same orde::. Our non-dimensionalized parameters are as follows:
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(53a)

18

V---X-- (53b)

(53c)

t¢ (53d)

and they require the following

(53e)

(go I_)---(go Isp)
(53f)

(53g)

(53h)

(_ocDs)-(poCDS)-r_-
m e

(53i)

(53j)
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The choices of r* and in* are completely arbitrary. However, it needs to be said

that after a problem is solved by these nondimensionalizations, rescaling

must be excersized with caution. This is a direct result of the atmosphere

model; if the rescaling is not consistent with the atmosphere model, the

results are invalid, e.g. rescaling also rescales the atmosphere model (note Eqn

(8)). ,' ..

If we solve Eqs (53a-j) such that the dimensional parameter is on the

left-hand side and then substitute into the original dynamics we find

equations that are exactly equal to the original equations with _t=l (The value

of J2, however, has no dimensions and is not changed). This can be extended

to the boundary equations and the costate differential equations. A special

note is required for the costates: the costates resulting from the solution to the

problem with this transformation will be some scalar multiplied by the

'dimensional' costates, e.g.

_.-A_
(53k)

which requires

-- -" (531)
V- V..E_

where _.* is completely arbitrary. This is easily verified by substitution into

the differential equations and boundary conditions.

W.4. Atmosphere Model

Any atmosphere is usable by simple substitution early in the

derivation of the differential constraint. For the purposes of this report we

have chosen a very simple atmosphere model. The model is not intended to

accurately represent the Earth's atmosphere, .._r any other planet for that
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matter. It is implemented only for the purpose of demonstrating the

methods for solving the optimization problem.

Our model is defined at 450km altitude above the planet's equator. The

entire atmosphere is assumed isothermal. The temperature is 1000K. The

density at the definition altitude is 1.184x10 -12 kg/m 3. This definition point

for this model is taken from the 1976 U.S. Standard Atmosphere 6. The

atmosphere is assumed spherical above the oblate planet. For real-world

solutions, we strongly recommend the use of the latest standard atmosphere

or some appropriate approximation thereof. The contemporary standard

atmosphere can be found in ref (7).

IV.5. The Multiple Point Shooting Method of BOUNDSCO

One method we are currently using to attempt to solve the TPBVP is

the multiple point shooting method. The specific algorithms we are

currently using are those given by H. J. Oberle in his subroutine

BOUNDSCO 7, written in FORTRAN. His method, a complete description of

which can be found in ref(8), is a modification of the traditional well-known

multiple point shooting method.

The use of this method requires the writing of a few routines that

define the problem. These routines include, of course, the calling program

itself, a subroutine defining the differential constraint (or system dynamics),

and a subroutine that defines the constraints on the problem.

The state used in BOUNDSCO differ slightly from the state defined in

this report. We have simply adjoined the _ vector to the state. This requires

also that the system dynamics includes a corresponding number of zero

derivatives. We justify for this by noting that it allows the statement of the

absolute and natural boundary conditions exactly as they are in this report. If

we did not implement this, we would have to solve the system of three of the

natural boundary conditions for the _ and substitute the result into the

fourth equation, using it in place of the four. This may seem desirable, one

equation in the place of four, however, the simple structure of the four
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equations is much more desirable than the complex structure of the one

equation.
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There is one particular feature that makes BOUNDSCO attractive: the

explicit inclusion of switching points in the problem formulation. Oberle

allows the user to specify the switching, function outside of the system

dynamics. This simplifies integration and improves convergence. There is a

tradeoff; the user must assume a switching structure and verify it outside of

BOUNDSCO.

W.6. The Minimizing-Boundary-Condition Method

The second method we are using is called the Minimizing-Boundary-

Condition Method (MBCM) 8. It is described in ref(9). This method is a

modification to the shooting method. It expands the set of available solutions

by removing one boundary-condition.. The choice of this boundary-condition

is arbitrary. Since there is a much larger set of solutions, it is much easier to

solve the resulting boundary-value problem. Once this is accomplished, the

search for the solution that incorporates the final boundary conditions is

treated as a minimization problem. The gradient is numerically calculated

and used to update the initial state until the last boundary condition is

satisfied. This method is at least as effective as BOUNDSCO in solving the

two-point boundary-value problems for the current solved optimal orbit

transfers.

The switching structure of optimal control is included in MBCM. The

program checks the switching function at each integration step. If the

switching function alters sign at one integration step, the program stops the

integration and restores all the states to-the beginning of the step. A secant

method then calculates a smaller step size for integrating the switching

function to an exact zero point. From our experience with MBCM some

sensitive problems need fourteen digits of accuracy in their switching

function. Once the integration passes the switching points the program

switches the control and uses a normal step size for integration.

IV.7. Sample Problems and Solutions
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Several solutions are presented in this section, all of which both

methods were able to converge. As a matter of fact, in most cases, the

solution to one problem can be used as the guess to a different problem and

the program(s) will converge. All problems have been nondimensionalized

and use the atmosphere model presented above.

The first problem presented is a fixed-final-time circle-to-circle orbit

transfer:

Find an extremal for the maximum final-mass problem which travels from a

circular orbit ofa=3.847 at y=3.72 to another circular orbit of a=1.5.

The available thrust is (a) 0.9, (b) 02 and golsp=51.254. The initial

mass is 1.527. The allowed time for transfer is 12.5. poSCD=3.894x10"

17

The optimal trajectories are shown in Fig. 1 for T=0.9 and in Fig. 3 for

T=0.2. Their switching functions are shown in Fig. 2 for T=0.9 and in Fig. 4

for T=0.2.

The second problem presented is a fixed-final-time apse-aligned ellipse-

to-ellipse orbit transfer:

Find an extremaI for the maximum final-mass problem which travels from an

orbit ofa=3.847 and rp=3.756 at y=3.76 to another orbit of a=1-5 and

rp=l. The apses of the orbits are aligned with the x-axis. The

available thrust is (a) 0.9, (b) 0.2 and golsp=51.254. The initial mass

is 1.527. The allowed time for transfer is 12. poSCD=3.894x10 "17.

The optimal trajectories are showfi in Fig. 5 for T=0.9 and in Fig. 7 for

T=0.2. Their switching functions are shown in Fig. 6 for T=0.9 and in Fig. 8

for T=0.2.

The third problem presented is a fixed-final-time non-apse-aligned

ellipse-to-ellipse orbit transfer:
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Find an extremal for the maximum final-mass problem which travels from an

orbit ofa=3.847 and rp=3.756 at y=3.76 to another orbit of a=l.5 and

rp=l. The apses of the initial orbit is at an angle of 153 ° with the x-

axis, clockwise. The apse of the final orbit is at an angle of109 ° with

the x-axis, counter-clockwise. The available thrust is (a) 0.9, (b) 0.2

and golsp=51.254. The initial'tnass is 1.527. The allowed time for

transfer is 10. poSCD= 3.894x10 "17.

The optimal trajectories are shown in Fig. 9 for T=0.9 and in Fig. 11 for

T=0.2. Their switching functions are shown in Fig. 10 for T=0.9 and in Fig. 12

for T=0.2.

V. CONCLUSIONS

The performance of BOUNDSCO was mixed. The ability of the routine

to converge solutions is quite strong, however, there is a flaw. BOUNDSCO

does not supply information to the user's routine concerning the polarity of

the switching function. The user must assume in all his/her code that the

desired switching structure is correct. The result of this is that BOUNDSCO

often allows itself to converge solutions with inconsistent switching

functions. This would not be so bad, except for one other difficulty with

BOUNDSCO: the routine does not attempt to aid the user in any way with the

initial guess. For example, one finds it nearly impossible to converge a two-

burn solution without the insight to guess an initial state that, when

integrated, produces two crossings of the switching function (this is actually,

not too difficult, if one pays attention to the sign of the switching function

and its derivative when making guesses). However, when BOLrNDSCO does

produce correct solutions, they are as accurate as the user can specify. The

solutions presented above satisfy their" boundary conditions within 10 "14

absolute error.

The performance of the minimizing-boundary condition method was

also quite promising. This method has one distinct advantage over

BOUNDSCO, it explicitly disallows inconsistent switching functions. The

n_ethod checks the switching function during, but separately from,

integzation to determine where the switching points are and, most
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importantly, what the switching function polarity is. This method is,

however, currently a simple shooting method and it exhibits the difficulty of

the same. It is expected that if the method is extended to a multiple-point

it's performance will rival, if not exceed that ofshooting method,

BOUNDSCO.

i+ °.

And thereby we come to the recommendation of this study: the

development of a method that is a hybrid of multiple-shooting and the

minimizing-boundary-condition method.
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